Experiências de restauração de lagos da Holanda: o que funciona e o que não funciona

02-08-2019, Miquel (Mike) Lürling

Wageningen University, Aquatic Ecology & Water Quality Management Group Netherlands Institute of Ecology, Dept. Aquatic Ecology Co-founder Aquatic Knowledge Centre Wageningen akwa https://nioo.knaw.nl/en/akwa Chairman Lake Restoration Work Group (Int'l Limnology Society, SIL) Board member Platform Ecological Restoration of Lakes (PEHM)

Eutrophication = no.1 water quality issue in the Netherlands

Cyanobacterial bloom in the river Meuse

Pictures made by Rijkswaterstaat Zuid-Nederland – August 2018

Cyanobacterial blooms in many surface waters

No.1 water quality issue in the Netherlands

Somethings need to be done, but what?

Measures:

- Public oriented
 - Information, awareness, warnings
- Effect oriented

 Reduce nuisance, fighting symptoms
- Source oriented
 - \circ Reducing nutrient inputs
 - Tackling internal loading

Source oriented: reduce the external load

UNIVERSITY & RESEARCH

Source oriented measures in Netherlands

Point source pollution is being tackled:

- Drastic reduction P load from industry
- Strong reduction P load from WWTP

The Netherlands has world leading WWT

Point source nutrient pollution has been tackled

Working Group on Lake Restoration

Legacies and diffuse loads remain an issue

More action needed: in-lake interventions

Effect oriented measures (in-lake actions)

Numerous measures proposed and applied:

- Physical: Aeration/water movement, ultrasound, jets, bubble screen, dam, floating screen...
- ♦ Chemical: Algaecides, H₂O₂, coagulants, P-fixatives...
- Biological: Barley straw, Dreissena, EM "effective micro-organisms", Golden algae, plant extracts, filter-feeding fish...

Some are promising, others come with dubious claims and without proper scientific testing

Physical methods

A) Bubble screen

Not so effective

- B/C) Surface aeration/mixing
 - Not effective, stimulation!
- D) Floating oil screen Not so effective
- E) Fountain/mixing
 - Not effective, aerosols !
- F) Excavation
 - Effective, shallow, costs
- G) Dredging

Mixed results, costs

Physical methods – low energy ultrasound

- High energy ultrasound will kill everything at high energy costs, but low water penetration depth
- Low frequency, low energy ultrasound heavily promoted
- No proof of control in laboratory
 - WATER RESEARCH 66 (2014) 361-373
- No proof in field trials

Kardinaal et al., 2008: Ultrasound could NOT prevent cyanoblooms and surface scums

Physical methods – low energy ultrasound

Ultrasound is promoted with lots of "**anecdotal evidence**", but experiments and independent monitoring show it, physics explains it: Low energy, low frequencies ultrasound **cannot** eliminate cyanobacteria

Working Group on Lake Restoration

Resonance frequency can

 $\left(\frac{3\gamma}{R_0^2\rho}\left(p_0 + \frac{2\sigma}{R_0} + \frac{2\chi}{R_0}\right) - \left(\frac{2\sigma + 6\chi}{R_0^3\rho}\right)\right)$

be calculated:

Chemical methods

Algaecides, coagulants and P-fixatives are most common Intended effect: decimating/removing cyano-biomass

Chemical methods – hydrogen peroxide

Cyanobacteria are more sensitive than eukaryotes to H₂O₂
 Intensively used in The Netherlands

Efficacy is variable (none, few weeks, whole season)

Chemical methods - Coagulants

Inorganic – alum, polyaluminium chloride, ferric chloride
 Organic – chitosan, polyacrylamides, *Moringa* extract...

Combined with ballast (soil, modified clay)

17

Working Group on Lake Restoration

Chemical methods - Phosphate-fixatives

Testing numerous compounds

Field experiments in the Netherlands

Pond Eindhoven	0.7	Compartments	9/2009 – 9/2011
Pond Eindhoven	0.7	Enclosures	Aug – Sep 2010
Pond Heesch	0.16	Enclosures	Jul – Sep 2009
Kleine Melanen	4	Enclosures	Mar – Jun 2010
Kleine Melanen	4	Field	Aug – Oct 2010
Grootte Melanen	4.8	Field	19/20 Apr 2016 20 Apr 2016

1.3 kg/m2
0.3 kg/m2
0.3 kg/m2
16.6 ton Phoslock [®]
13.7 ton Phoslock [®]
4 ton PAC

1.13 kg/m2

Lake Rauwbraken

Water: No inflow, no outflow, precipitation, evaporation, groundwater

P: P in precipitation, P in groundwater, P from leaf litter, P from birds, P from bathers, P from sediment...

Combined coagulant + P-fixative addition

Immediate removal of cyanobacteria and reduction internal P release

Lake Rauwbraken – Total Phosphorus

Lake Rauwbraken

Lake Rauwbraken

■ Repeated interventions are inevitable = maintenance Application costed € 50.000,-, i.e. ~ € 4.500,- per season

Lake Rauwbraken is not unique for NL, diffuse pollution is everywhere

UNIVERSITY & RESEARCH

Biological methods

Biomanipulation:

Many attempts failed (Gulati et al 2008)

Working Group on Lake Restoration

Biological methods - Zebra mussels

Filtering could reduce phytoplankton biomass

Experiment with 1600 crates of dreissenids placed in 1.1 ha urban pond (Linievijver Breda) failed, because mussels didn't reproduce and died in three years time.

1000-faces of "Effective Micro-organisms"

They come in many formulations, but are they as `effective' as claimed?

"Effective microbes" are not effective

■ Do not remove or permanently fix P
 ■ Are on menu grazers → Green soups remain

Lakes & Reservoirs: Research and Management 2009 14: 353-363

Mitigating cyanobacterial blooms: how effective are 'effective microorganisms'?

Miquel Lurling,¹* Yora Tolman^{1,2} and Marieke Euwe^{1,3}

Hydrobiologia (2010) 646:133–143 DOI 10.1007/s10750-010-0173-3

SHALLOW LAKES

Cyanobacteria blooms cannot be controlled by Effective Microorganisms (EM[®]) from mud- or Bokashi-balls

Miquel Lurling · Yora Tolman · Frank van Oosterhout

Field experiment – RWA De Dommel

30-01-2015: 500 EM mudd balls in pond
No effect on water quality variables: blooms persisted

Biological methods - Barley straw

Biological methods - Barley straw extract

No growth reduction in nutrient rich medium, even growth stimulation in less enriched conditions

Nutrients in extract !

32

Working Group on Lake Restoration

Road to hell is paved with good intentions: Better not put your money on these

- Ultrasound
- Surface aerators, oil screens, bubble screens...
- Effective- micro-organisms', mud balls...
- Barley straw
- Plant/tree extracts
- Things that can be toxic
- Anything copy-pasted without a proper diagnosis of your identified problem

There is NO silver bullet: each lake is unique Mitigation should always start with a system analysis

- Water- and nutrient fluxes
- Biological make-up
- Functions (C/B-analysis)

- = diagnosis → measureS

N, P, Temp, ... , species, abundance, CHL-a, ... , cyanotoxins

Lake Groote Melanen – The Netherlands

Dr Guido Waajen – Water Authority Brabantse Delta

Example of diagnosis driven lake restoration:

- External P-load > critical P-load (inflow from 2 streams is main P source)
- High internal load from sediment (0.7 m mud on organic rich peat and sand)
- Fish 268 kg ha⁻¹ dominated by carp (78%)

Measures:

- Fish removal
- Diversion stream
- Dredging, capping sediment
- Flock & Lock

Unpublished data from Dr Guido Waajen – Water Authority Brabantse Delta

Lake restoration research in Netherlands

Working Group on Lake Restoration

Lake restoration: system analysis is crucial

In-lake measures are inevitable (legacies, diffuse pollution)

- Repeated interventions are often unavoidable
- Many doubtful "magic solutions":
 - ultrasound
 - "effective microbes"

• plant extracts, barley, oil screens, surface mixers...

Targeting cyanobacteria directly:

- algaecides, peroxide
- coagulants (harvest or sink)

Targeting phosphate = removing fuel for blooms

• La-bentonite is a very powerful P-fixative

Thank you!

Like our Facebook site "Lake Restoration Research"

h" 🄰

Tweet about your lake restoration works #LakeRestoration @SilWorking

Lake Restoration Working G.

Miquel Lürling (Co-Chairperson)

Aquatic Ecology and Water Quality Management Group Wageningen University 6700 AA, Wageningen THE NETHERLANDS Email: miquel.lurling@wur.nl

Brian Spears (Co-Chairperson)

Centre for Ecology and Hydrology Edinburgh UNITED KINGDOM Email: spear@ceh.ac.uk

Lake Restr Res

Facebook page >>>

Profiel bewerken

SIL Working Group On Lake Restoration

@SilWorking

S nl-nl.facebook.com/LakeRestoratio...

